Restartings: A Technique to Improve Classic Genetic Algorithms' Performance
نویسندگان
چکیده
In this contribution, a way to enhance the performance of the classic Genetic Algorithm is proposed. The idea of restarting a Genetic Algorithm is applied in order to obtain better knowledge of the solution space of the problem. A new operator of “insertion” is introduced so as to exploit (utilize) the information that has already been collected before the restarting procedure. Finally, numerical experiments comparing the performance of the classic Genetic Algorithm and the Genetic Algorithm with restartings, for some well known test functions, are given. Keywords—Genetic Algorithms, Restartings, Search space exploration, Search space exploitation.
منابع مشابه
The Multidisciplinary Design Optimization of a Reentry Vehicle Using Parallel Genetic Algorithms
The purpose of this paper is to examine the multidisciplinary design optimization (MDO) of a reentry vehicle. In this paper, optimization of a RV based on, minimization of heat flux integral and minimization of axial force coefficient integral and maximization of static margin integral along reentry trajectory is carried out. The classic optimization methods are not applicable here due to the c...
متن کاملComparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction
No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...
متن کاملApplication of Particle Swarm Optimization and Genetic Algorithm Techniques to Solve Bi-level Congestion Pricing Problems
The solutions used to solve bi-level congestion pricing problems are usually based on heuristic network optimization methods which may not be able to find the best solution for these type of problems. The application of meta-heuristic methods can be seen as viable alternative solutions but so far, it has not received enough attention by researchers in this field. Therefore, the objective of thi...
متن کاملRedundancy Allocation Problem of a System with Three-state Components: A Genetic Algorithm (RESEARCH NOTE)
The redundancy allocation is one of the most important and useful problems in system optimization, especially in electrical and mechanical systems. The object of this problem is to maximize system reliability or availability within a minimum operation cost. Many works have been proposed in this area so far to draw the problem near to real-world situations. While in classic models the system com...
متن کاملFINDING HIGHLY PROBABLE DIFFERENTIAL CHARACTERISTICS OF SUBSTITUTION-PERMUTATION NETWORKS USING GENETIC ALGORITHMS
In this paper, we propose a genetic algorithm, called GenSPN, for finding highly probable differential characteristics of substitution permutation networks (SPNs). A special fitness function and a heuristic mutation operator have been used to improve the overall performance of the algorithm. We report our results of applying GenSPN for finding highly probable differential characteristics of Ser...
متن کامل